171 research outputs found

    Herpes simplex virus as a model vector system for gene therapy in renal disease

    Get PDF
    Herpes simplex virus as a model vector system for gene therapy in renal disease. The past decade has been marked by significant advances in the application of gene transfer into living cells of animals and humans. These approaches have been tested in a few animal models of inherited and acquired renal diseases, including carbonic anhydrase II deficiency 1 and experimental glomerulonephritis2,3. Gene transfer into proximal tubular cells has been successfully accomplished by intrarenal arterial infusion of a liposomal complex4 or an adenoviral vector5. Tubular cells from the papilla and medulla have been selectively transduced by retrograde infusion into the pelvi-calyceal system of an adenoviral vector containing a reporter for Ξ²-galactosidase5. Although the results of these initial studies are promising, further studies to optimize viral vectors, maximize gene delivery, minimize side-effects, and develop cell-specific and long-term regulated gene expression are critical to the success of gene therapy targeted to specific compartments of the kidney. Our recent efforts have focused on defining the cellular pathways responsible for viral entry and infection into renal epithelial cells using herpes simplex virus (HSV) as a model vector. We anticipate that a solid understanding of the basic scientific principles underlying viral entry and gene expression into specific populations of renal cells will facilitate the design of successful therapeutic viral-based gene transfer strategies

    Herpes simplex virus triggers activation of calcium-signaling pathways

    Get PDF
    The cellular pathways required for herpes simplex virus (HSV) invasion have not been defined. To test the hypothesis that HSV entry triggers activation of Ca2+-signaling pathways, the effects on intracellular calcium concentration ([Ca2+]i) after exposure of cells to HSV were examined. Exposure to virus results in a rapid and transient increase in [Ca2+]i. Pretreatment of cells with pharmacological agents that block release of inositol 1,4,5-triphosphate (IP3)–sensitive endoplasmic reticulum stores abrogates the response. Moreover, treatment of cells with these pharmacological agents inhibits HSV infection and prevents focal adhesion kinase (FAK) phosphorylation, which occurs within 5 min after viral infection. Viruses deleted in glycoprotein L or glycoprotein D, which bind but do not penetrate, fail to induce a [Ca2+]i response or trigger FAK phosphorylation. Together, these results support a model for HSV infection that requires activation of IP3-responsive Ca2+-signaling pathways and that is associated with FAK phosphorylation. Defining the pathway of viral invasion may lead to new targets for anti-viral therapy

    COVID-19 and children

    Get PDF
    There has been substantial research on adult COVID-19 and how to treat it. But how do severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections afflict children? The COVID-19 pandemic has yielded many surprises, not least that children generally develop less severe disease than older adults, which is unusual for a respiratory disease. However, some children can develop serious complications from COVID-19, such as multisystem inflammatory syndrome in children (MIS-C) and Long Covid, even after mild or asymptomatic COVID-19. Why this occurs in some and not others is an important question. Moreover, when children do contract COVID-19, understanding their role in transmission, especially in schools and at home, is crucial to ensuring effective mitigation measures. Therefore, in addition to nonpharmaceutical interventions, such as improved ventilation, there is a strong case to vaccinate children so as to reduce possible long-term effects from infection and to decrease transmission. But questions remain about whether vaccination might skew immune responses to variants in the long term. As the experts discuss below, more is being learned about these important issues, but much more research is needed to understand the long-term effects of COVID-19 in children

    Differences in Gut Microbiome in Hospitalized Immunocompetent vs. Immunocompromised Children, Including Those With Sickle Cell Disease.

    Get PDF
    Background: Gut microbial diversity and composition play important roles in health. This cross-sectional study was designed to test the hypothesis that hospitalized children who may be relatively immunocompromised (IC), defined as those with cancer, sickle cell disease (SCD), transplantation, or receiving immunosuppressive therapy) would have decreased microbial diversity, increased Clostridioides difficile colonization and different species composition compared to non-immunocompromised (Non-IC) children admitted to the same pediatric unit. Methods: A stool sample was obtained within 72 h of admission to a single unit at The Children\u27s Hospital at Montefiore, Bronx, NY from March 2016 to February 2017 and the microbiome assessed by 16S rRNA sequencing. C. difficile colonization was assessed by glutamate dehydrogenase antigen and toxin polymerase chain reaction assays. Results: Stool samples were obtained from 69 IC (32 SCD, 19 cancer, 9 transplantation and 9 other) and 37 Non-IC patients. There were no significant differences in microbial alpha diversity and C. difficile colonization comparing IC vs. non-IC patients. Lower alpha diversity, however, was independently associated with the use of proton pump inhibitors or antibiotics, including prophylactic penicillin in patients with SCD. Differences in specific species abundances were observed when comparing IC vs. non-IC patients, particularly children with SCD. Non-IC patients had increased abundance of commensals associated with health including Alistipes putredinis, Alistipes ihumii, Roseburia inulinivorans, Roseburia intestinalis, and Ruminococcus albus (p \u3c 0.005). Conclusions: Antibiotics and proton pump inhibitors, which were more commonly used in IC children, were identified as risk factors for lower microbial diversity. Non-IC patients had higher abundance of several bacterial species associated with health. Longitudinal studies are needed to determine the clinical significance of these differences in gut microbiome

    Bridging the Gap between Preclinical and Clinical Microbicide Trials: Blind Evaluation of Candidate Gels in Murine Models of Efficacy and Safety

    Get PDF
    Despite significant protection in preclinical studies, cellulose sulfate (CS) failed to protect women against HIV-1/2 and was associated with a trend toward increased HIV-1 acquisition in one of the clinical trials. These results highlight the need for preclinical tests more predictive of clinical outcomes. The objective of this study was to test coded vaginal gels, including CS, in murine models of safety and efficacy to determine the models' utility for evaluating future products.Four coded formulations, including 6% CS, 2% PRO 2000 and two placebo gels, were administered intravaginally to medroxyprogesterone-treated mice and their ability to prevent genital herpes (efficacy) or to alter the susceptibility to low dose HSV challenge (safety) was determined. Nonoyxnol-9 served as a positive toxicity control.CS and PRO 2000 significantly protected mice from genital herpes following infection with a laboratory or clinical isolate of HSV-2 introduced in buffer (p<0.001). However, protection was reduced when virus was introduced in seminal plasma. Moreover, mice were significantly more susceptible to infection with low doses of HSV-2 when challenged 12 h after the 7th daily dose of CS or nonoxynol-9 (p<0.05). The increased susceptibility was associated with alterations in epithelial architecture.CS prevented genital herpes when present at the time of viral challenge, but increased the rate of infection when gel was applied daily for 7 days with a vaginal wash prior to viral inoculation. The findings presumably reflect altered epithelial architecture, which may have contributed to the trend towards increased HIV observed clinically

    Postcoital Bioavailability and Antiviral Activity of 0.5% PRO 2000 Gel: Implications for Future Microbicide Clinical Trials

    Get PDF
    The pharmacokinetics and pharmacodynamics of vaginal microbicides are typically assessed among sexually abstinent women. However, the physical act of sex may modulate gel distribution, and preclinical studies demonstrate seminal plasma interferes with the antiviral activity of several microbicides. This study compared the biological activity and concentration of PRO 2000 in cervicovaginal lavage (CVL) collected in the absence or following coitus.CVL samples were collected from ten heterosexual couples at baseline, after sex, after a single dose of 0.5% PRO 2000 gel and sex, and after gel application without sex. The impact of CVL on HIV-1 infection of TZM-bl cells and HSV-2 infection of CaSki cells was monitored by luciferase and plaque assay, respectively. PRO 2000 concentrations were measured by fluorescence.CVL collected after PRO 2000 application significantly inhibited HIV-1 and HSV-2 (p = 0.01). However, the antiviral activity was reduced following sex and no significant protective effect was observed in postcoital CVL obtained in the presence compared to the absence of PRO 2000 for HIV (p = 0.45) or HSV-2 (p = 0.56). Less PRO 2000 was recovered in postcoital CVL, which, in conjunction with interference by seminal plasma, may have contributed to lower antiviral activity.Postcoital responses to PRO 2000 differ from precoital measures and the results obtained may provide insights into the clinical trial findings in which there was no significant protection against HIV-1 or HSV-2. Postcoital studies should be incorporated into clinical studies before embarking on large-scale efficacy trials

    HSV Usurps Eukaryotic Initiation Factor 3 Subunit M for Viral Protein Translation: Novel Prevention Target

    Get PDF
    Prevention of genital herpes is a global health priority. B5, a recently identified ubiquitous human protein, was proposed as a candidate HSV entry receptor. The current studies explored its role in HSV infection. Viral plaque formation was reduced by ∼90% in human cells transfected with small interfering RNA targeting B5 or nectin-1, an established entry receptor. However, the mechanisms were distinct. Silencing of nectin-1 prevented intracellular delivery of viral capsids, nuclear transport of a viral tegument protein, and release of calcium stores required for entry. In contrast, B5 silencing had no effect on these markers of entry, but inhibited viral protein translation. Specifically, viral immediate early genes, ICP0 and ICP4, were transcribed, polyadenylated and transported from the nucleus to the cytoplasm, but the viral transcripts did not associate with ribosomes or polysomes in B5-silenced cells. In contrast, immediate early gene viral transcripts were detected in polysome fractions isolated from control cells. These findings are consistent with sequencing studies demonstrating that B5 is eukaryotic initiation factor 3 subunit m (eIF3m). Although B5 silencing altered the polysome profile of cells, silencing had little effect on cellular RNA or protein expression and was not cytotoxic, suggesting that this subunit is not essential for host cellular protein synthesis. Together these results demonstrate that B5 plays a major role in the initiation of HSV protein translation and could provide a novel target for strategies to prevent primary and recurrent herpetic disease
    • …
    corecore